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A B S T R A C T

Excessive use of plastics in daily life and the inappropriate disposal of plastic products are severely affecting
wildlife species in both coastal and aquatic environments. Birds are top-predators, exposed to all threats af-
fecting their environments, making them ideal sentinel organisms for monitoring ecosystems change. We set a
baseline assessment of the prevalence of marine plastic litter affecting multi-species populations of aquatic birds
in southern Portugal. By examining 160 stomach contents from 8 species of aquatic birds, we show that 22.5%
were affected by plastic debris. Plastic was found in Ciconia ciconia, Larus fuscus and L. michahellis. Ciconia ciconia
ingested the highest amount (number of items and total mass) of plastic debris. Polydimethylsiloxane (PDMS,
silicones) was the most abundant polymer and was recorded only in C. ciconia. Plastic ingestion baseline data are
of crucial importance to evaluate changes through time and among regions and to define management and
conservation strategies.

Since the mass production of plastics started in the 1950s, pollution
of this inexpensive and long-lasting material has rapidly emerged as a
global environmental concern (Barnes et al., 2009). The rapid and
significant accumulation of plastic debris is pervasive and is affecting
marine and terrestrial ecosystems virtually everywhere on the planet,
far beyond areas of high human population density (e.g., Browne et al.,
2011; Duis and Coors, 2016; Thompson et al., 2009). The drawbacks of
plastic waste are not limited to aesthetic values; there is now clear and
increasing evidence that it represents a major threat to wildlife (Barnes
et al., 2009). The number of potentially detrimental consequences of
plastic debris has escalated in terms of effects and taxa affected
(Bergmann et al., 2015).

Aquatic birds are especially susceptible to the ubiquitous and in-
creasing presence of plastic contamination (e.g., Acampora et al., 2017;
Wilcox et al., 2015). Indeed, some of the earliest reports of plastic litter
in the marine environment are of plastic caps, toys and bags ingested by
seabirds in the 1960s (Harper and Fowler, 1987; Kenyon and Kridler,
1969).

Plastic pollution has a wide range of negative effects on aquatic
birds. These include entanglement in multi-pack beverage rings, plastic
bags and other plastic items (Bond et al., 2012; Gregory, 2009; Laist,
1997; Udyawer et al., 2013; Votier et al., 2011); smaller plastic debris
can be ingested by mistake or because they resemble natural food items

(Cadée, 2002; Jackson et al., 2000) causing internal wounds and ulcers,
gastrointestinal obstruction and poisoning from exposure to plastic
fragments and the organic pollutants associated with them.

In Europe, the Marine Strategy Framework Directive (MSFD) has
proposed ingestion of debris by marine organisms as a marine litter
indicator to quantify progress towards a “Good Environmental Status”
(GES). In particular, due to their susceptibility to plastic debris inges-
tion, aquatic birds have been considered as good bioindicators for
plastic pollution. Of all the seabird species, the Northern Fulmar
(Fulmarus glacialis) is probably the most well-known bioindicator. Since
2009, monitoring ingestion of plastic litter in beached specimens of F.
glacialis has been adopted by the Oslo-Paris Convention (OSPAR, 2010)
and MSFD (Directive, 2008) as a marine environment quality indicator
in the southern North Sea.

The selection of an individual species as an indicator is crucial for
analyses of spatial and temporal trends in plastic pollution (Avery-
Gomm et al., 2012; Kühn and van Franeker, 2012; Mallory et al., 2006;
Provencher et al., 2009; Van Franeker et al., 2011). At the same time,
surveys for a wide array of species (including non-indicator species) are
also important to understanding the pervasiveness of plastic ingestion
and identifying factors that account for differences in the quantities and
qualities of plastic ingested by different species (Avery-Gomm et al.,
2013; Provencher et al., 2014; Roman et al., 2016). Additionally,
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comprehensive multi-species investigations may also be valuable in
detecting alternative species for use in monitoring programmes (e.g.
Acampora et al., 2016).

Plastic ingestion data are of particular value in regions where
baseline studies are not yet available; not only they are important for
assessing changes through time and differences among regions, they are
also fundamental to a functional definition of management and con-
servation efforts (Avery-Gomm et al., 2013). While there is little in-
formation on the abundance, distribution and fluctuations (spatial and
temporal) of plastic litter in Portuguese waters and shores (e.g.,
Antunes et al., 2013; Martins and Sobral, 2011; Oliveira et al., 2015),
there is no published information concerning marine litter in aquatic
birds in Portugal. A quantitative assessment that includes both nu-
merical and mass trends is critical. In fact, number and mass of plastic
items do not always match and plastic abundance evaluated in terms of
mass is considered to be ecologically more relevant (Provencher et al.,
2017; van Franeker and Law, 2015). Additionally, recent studies have
stressed the importance of spectroscopic techniques in plastic mon-
itoring schemes; these are critical to avoid misidentification of natural
items for synthetic polymers (e.g., Wesch et al., 2016). Moreover,
knowledge of the composition of plastic debris could lead to more ef-
fective mitigation measures (Ryan et al., 2009).

The south of Portugal is characterized by several lagoons near the
coastline some of which are referred as areas of high diversity of
wildlife including the presence of more than a 100 aquatic bird species.
Here, we provide a first quantitative (number of items and total mass of
litter) and qualitative (visual and spectroscopic assessment) baseline
data on plastic ingestion by multi-species populations of aquatic birds
in southern Portugal.

Sampling took place between June 2014 and June 2016 and com-
prised aquatic birds that had been brought to the wildlife recovery
center RIAS in Olhão, southern Portugal. Birds were collected by

volunteers along southern Portugal by locals and therefore sampling
was irregular over time, space and species. The birds used in this study
were either dead when they were admitted to the recovery facility or
died during their stay. A total of 160 individuals belonging to 8 species
were investigated: two razorbills (Alca torda), one grey heron (Ardea
cinerea), nine white storks (Ciconia ciconia), 62 lesser black-backed
(Larus fuscus) and 75 yellow-legged gulls (L. michahellis), eight northern
gannets (Morus bassanus), one great cormorant (Phalacrocorax carbo)
and two greater flamingos (Phoenicopterus roseus). Birds were labelled
and frozen at −20 °C for later necropsy.

Dissections were performed following van Franeker (2004). For
each sample and when available, data on age (juvenile or adult),
gender, probable cause of death and body condition were recorded.
Gender and age were derived from development stage of sexual organs
and plumage evaluation. Body condition scoring (0–4) was evaluated
following (Pinilla and Català, 2000). The gastrointestinal tract (eso-
phagus, stomach and intestines) was collected and stored at −20 °C.
Stomach contents were rinsed and sieved through a 1 mm mesh, re-
tained in a petri dish and air dried for at least 2 days (Van Franeker
et al., 2011).

Contents were examined under a stereomicroscope (SteREO
Discovery V8 1x-8x). Plastic items were counted and individually
weighted (Sartorius advantage AW-224 Balance) to the nearest
0.0001 g. These items were then classified in three different ways: (a)
by categories as industrial or user and, within user, in sheetlike, frag-
ment, threadlike, foamed or other (as in Van Franeker et al., 2011); (b)
by colour, as dark (i.e., black, dark brown and dark blue), light (i.e.,
white and yellow), warm (i.e., orange, red and pink) or cold colors (i.e.,
pale blue and green; as in Codina-García et al., 2013) and (c) by
polymer, as polyacrylamide (PAM), polydimethylsiloxane (PDMS),
polyethylene (PE), polystyrene (PS), polytetrafluoroethylene (PTFE). To
obtain information on their resin or polymer composition, Raman

Fig. 1. Plastic litter occurrence (%) in the stomach of eight
aquatic species in southern Portugal: Alca torda (n = 2),
Ardea cinerea (n = 1), Larus michahellis (n = 75), Ciconia
ciconia (n = 9) Larus fuscus (n = 62), Morus bassanus
(n= 8), Phalacrocorax carbo (n = 1) Phoenicopterus roseus
(n= 2).

K.R. Nicastro et al. Marine Pollution Bulletin 126 (2018) 413–418

414



spectroscopy analysis was performed (JASCO NRS-4100). A laser beam
(532 or 785 nm) was focused on the sample surface using a 5× or 20×
objective, resulting in a spot size of ~30 or ~5 μm, respectively; the
laser power was in the 0.5–5.0 mW range depending on the specific
sample, and it was kept low enough to prevent sample damage. Given
the high spatial resolution of the Raman spectrometer, for each sample
at least three spectra at three different points of the sample surface were
acquired. In order to identify the polymer composition the spectra were
then compared with those of the most common polymers included in a
home-made spectral database. When identification through Raman
analysis was ambiguous or not possible, usually due to intense photo-
luminescence background, Fourier-Transform Infrared Spectroscopy
(FTIR) was used as an additional technique (JASCO FT/IR-4700), per-
forming both transmission and attenuated total reflectance (ATR)
measurements.\

Results show that a total of 135 plastic items with an average mass
of 3.84 g were recorded in 160 birds comprising 19 females and 32
males (note that in 92 samples gender was not recorded). Overall, 2 was
the most common condition index (CI) recorded (note that in 29 sam-
ples CI could not be recorded). Plastic was found in three species (Larus
fuscus, L. michahellis, Ciconia ciconia) out of the eight species processed
and with an average incidence rate of 43.4% (Fig. 1 and Tables 1, 2, 3).

This study provides baseline data on plastic ingestion in eight
aquatic bird species in southern Portugal. We report evidence of plastic
ingestion in three species. Overall, our results show that the prevalence
of plastic ingestion by Laridae in southern Portugal is at similar levels to
other parts of southern and northern Europe (e.g., Acampora et al.,
2016; Codina-García et al., 2013). Interestingly, although other works
have reported relatively high occurrences, mass and numbers of plastic
items in Morus bassanus (Codina-García et al., 2013), the eight in-
dividuals we necropsied in our study did not show any evidence of
plastic consumption. In contrast, we found a remarkably high percen-
tage of Ciconia ciconia individuals with ingested plastic, compared to
other studies in Iberia (e.g., Peris, 2003).

There is abundant evidence that Ciconiidae are increasingly reliant
on terrestrial anthropogenic resources for foraging. Although it is not
possible to establish if the large amount of plastic items found in the C.
ciconia stomachs we analysed originated from human-related habitats,
several recent studies have reported increasing use of agricultural areas
and rubbish dumps by European white storks with significant beha-
vioural consequences (Gilbert et al., 2016). For example, Spanish
landfill sites provide nearly 70% of white stork diets, affecting their
population dynamics and fitness and behavioural traits (Peris, 2003).
The pronounced increase in the breeding population of the white stork

Table 1
Data on plastics ingested by Larus michahellis (n= 75) based on (a) category, (b) colour and (c) polymer type. Values were calculated per individual and included all individuals
sampled (affected and non-affected by plastics). 95% CI: Jeffreys' nominal 95% confidence intervals.

A. Prevalence (95% CI) Number Mass

Mean
(SD; SE)

Median Range Mean
(SD; SE)

Median Range

All plastics 0.1867
(0.1146–0.2893)

0.2667
(0.859499; 0.099246)

0 5 0.0009
(0.0054; 0.00063)

0 0.0448

Industrial plastics 0
(0–0)

0.0133
(0.1155; 0.0133)

0 1 0.0003
(0.0024; 0.0001)

0 0.0216

User plastics
Sheetlike 0.1067

(0.0551–0.1967)
0.2133
(0.1155; 0.0133)

0 5 0.0003
(0.0012; 0.0001)

0 0.0076

Threadlike 0.0267
(0.0074–0.0922)

0.04
(0.2568; 0.0296)

0 2 4.66667E-05
(0.0003; 3.31164E-05)

0 0.002

Foamed 0.04
(0.0137–0.1111)

0.05333
(0.2796; 0.0323)

0 2 9.86667E-05
(0.0006; 7.09395E-05)

0 0.0045

Fragment 0.12
(0.0644–0.2126)

0.26667
(0.8595; 0.0992)

0 5 0.00093
(0.00054; 0.0006)

0 0.0448

Other 0
(0–0)

0
(0; 0)

0 0 0
(0; 0)

0 0

B. Prevalence (95% CI) Number

Mean
(SD; SE)

Median Range

Dark 0.08
(0.0372–0.1637)

0.12
(0.4638; 0.0535)

0 3

Light 0.1733
(0.1042–0.2743)

0.44
(1.2108; 0.1398)

0 7

Cold 0.0267
(0.0074–0.0922)

0.04
(0.2568;0.0296)

0 2

Warm 0
(0–0)

0
(0; 0)

0 0

C.
PAM 0.04

(0.0137–0.1111)
0.0533
(0.2796; 0.03229)

0 2

PDMS 0
(0–0)

0
(0; 0)

0 0

PE 0.0933
(0.0459–0.1803)

0.2533
(1.0013; 0.1156)

0 7

PS 0.1467
(0.0839–0.2439)

0.293333
(0.8183; 0.0945)

0 5

PTFE 0
(0–0)

0
(0; 0)

0 0
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in Iberia over the last forty years has been attributed to the year-round
availability of artificial food from landfill sites, which buffers seasonal
declines in food availability and reduces mortality in first-year birds
(Gilbert et al., 2016; Tortosa et al., 2002). In addition, a recent study of
C. ciconia breeding colonies in northern Algeria shows that access to
extra food from dumps increases egg volume and hatching mass
(Djerdali et al., 2016). Feeding on rubbish dumps also affects home
ranges and migratory patterns of white Storks (Blanco, 1996; Tortosa
et al., 2002); continuous and abundant food resources from landfill sites
have promoted the establishment of resident individuals in a previously
wholly migratory species (Gilbert et al., 2016). Specifically, in Iberia,
the number of overwintering white storks has increased by an order of
magnitude over the last twenty years (Rosa et al., 2009). Foraging on
rubbish dumps has a critical influence on resident populations, as the
majority of resident white storks congregate near landfills (Tortosa
et al., 2002); in general, long distance foraging trips are performed
specifically to visit landfills while non-landfill foraging occurs in the
proximity of the nest (Gilbert et al., 2016).

The European Union Landfill Directive (1993/31/EC) aims at
closing landfill sites or replacing them with covered waste management
facilities; this policy will likely have important consequences on the

abundance and behaviour of white stork populations. Despite providing
spatially and temporally stable food resources, rubbish dumps may be
deleterious since white storks are exposed to large amounts of non-
edible, anthropogenic debris that mimics food (e.g., Henry et al., 2011).
In general, earthworms form the most abundant part of their diet
(Antczak et al., 2002); several studies have provided evidence for
massive ingestion of rubber bands by white storks, presumably because
their colour and shape mimic prey such as Lumbricidae (e.g., Sazima and
D'angelo, 2015). Rubber bands can be detrimental not only when
foraging (i.e. gastrointestinal obstruction, internal wounds). In fact, it
has been shown that C. ciconia adults can suffer wing and/or bill en-
tanglement while entanglement in plastic bands used to improve nest
structure can cause broken wings and/or legs in juveniles (Kwieciński
et al., 2006; Sazima and D'angelo, 2015). Moreover, the handling of
plastic strings and the efforts to swallow and regurgitate them may be
considered as a waste of foraging time and energy (Sazima and
D'angelo, 2015).

Our findings support previous work by highlighting a particularly
high occurrence of worm-like debris in C. ciconia. Silicones (PDMS)
belonging to the category others (i.e. rubber bands, elastics) and warm
coloured (i.e. orange, red and pink) debris were found only in C.

Table 2
Data on plastics ingested by Larus fuscus (n = 62) based on (a) category, (b) colour and (c) polymer type. Values were calculated per individual and included all individuals sampled
(affected and non-affected by plastics). 95% CI: Jeffreys' nominal 95% confidence intervals.

A. Prevalence (95% CI) Number Mass

Mean
(SD; SE)

Median Range Mean
(SD; SE)

Median Range

All plastics 0.2258
(0.1395–0.344)

0.4677
(1.956; 0.2484)

0 6 0.0056
(0.0358; 0.0045)

0 0.2793

Industrial plastics 0
(0; 0)

0
(0; 0)

0 0 0
(0; 0)

0 0

User plastics
Sheetlike 0.0968

(0.0451–0.1955)
0.1452 0 2 0.0006

(0.0025; 0.0003)
0 0.0131

Threadlike 0.0806
(0.0349–0.1752)

0.0968 0 3 0.0163
(0.127; 0.0161)

0 1

Foamed 0.0484
(0.0166–0.1329)

0.1129 0 5 0.0002
(0.001; 0.0001)

0 0.0077

Fragment 0.129
(0.0668–0.2345)

0.4677 0 14 0.0056
(0.036; 0.0045)

0 0.2793

Other 0
(0–0)

0
(0; 0)

0 0 0
(0; 0)

0 0

Prevalence (95% CI) Number

Mean
(SD; SE)

Median Range

B.
Dark 0.0968

(0.0451–0.1955)
0.129
(0.424; 0.0538)

0 2

Light 0.1774
(0.102–0.2904)

0.56451613
(1.7332; 0.2201)

0 11

Cold 0.0484
(0.0166–0.1329)

0.129
(0.7784; 0.0989)

0 6

Warm 0
(0–0)

0
(0; 0)

0 0

C.
PAM 0.0161

(0.0028–0.0858)
0.01612903
(0.127;0.0161)

0 1

PDMS 0
(0; 0)

0
(0; 0)

0 0

PE 0.1452
(0.0783–0.2535)

0.258064516
(0.7228; 0.0918)

0 4

PS 0.1452
(0.0783–0.2535)

0.548387097
(2.0137; 0.25574)

0 13

PTFE 0
(0–0)

0
(0; 0)

0 0
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ciconia.
In conclusion, the assessment of ingested litter in the stomach of

beached birds is not a proxy for quantitative abundance of plastic litter
in the environment, however, it reflects spatio–temporal differences
and fluctuations of plastic litter abundance (Van Franeker et al., 2011;
van Franeker and Law, 2015). As global plastic contamination con-
tinues to rise, multi-species plastic ingestion surveys and baseline data
for new regions, such as ours, are fundamental for larger syntheses
aimed at assessing current differences among areas and changes
through time. We highlight the importance of implementing accepted,
widely recognized protocols (e. g., Avery-Gomm et al., 2013; Van
Franeker et al., 2011) to allow comparison with other studies. Finally,
we stress the importance of categorizing plastic types according to
polymer type. The application of Raman and FTIR spectroscopy allows
discrimination between plastic and natural items, and can offer a po-
tential indication of plastic particle sources and impacts (Desforges
et al., 2014; Provencher et al., 2017).
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